

Introduction to Cryptography

arnaud.nauwynck@gmail.com

Communications

Point - to - Point Broadcast

Destination
Address

Dual Channel Communication
...example for Request - Response

Who are Alice, Bob,
Eve, Malory, & Trent .. ?

Eve (E=Environment … or Evil)
and Malory (M=Malicious)

Mallory intercept + modify data
… Eve does't not

In Trent you (may) Trust

M = Malory = Malicious User
Man-In-The-Middle

Man-In-The-Middle Weapons

Interception

Modification

Fabrication

Interruption

Replay

P
as

si
ve

F
or

 E
ve

&
 M

al
lo

ry

F
or

M

al
lo

ry

on
ly

A (Secured?) Chat

Allo Bob ? Alice speaking

Hi Alice

I have a secret to tell you
I will tell you only if ...

Ok, I will do/pay/.. it

Secret = bla bla

What's (Possibly) Wrong ?

Be Paranoiac !!

By Default, Everything is wrong

Proofs next ...

Possibly Wrong

Authentication

Confidentiality

Authentication

Integrity

Authorisation

Data Leak

Data Replay

Predicatable guess

...

Password Crack

Authentication (Receiver)

Allo Bob ? Alice speaking

Hi Alice

(imitating Bob's voice)

Oh.. Where is my phone?

Authentication (Sender)

Allo Bob ? Alice speaking

Hi Alice

(imitating Bob's voice)

Oh.. Where is my phone?

… Social Engineering

Allo Bob ? I am a friend of Alice

Hi

She asked me to tell you..

Bob is so naive

Sure, go ahead

Authentication denied

Allo Bob ? Alice speaking

Your voice is strange
I don't recognize Alice's voice
Bye

Basic Authentication

Allo Bob ?
Alice speaking
proof I am Alice:
my password is ..

Hi Alice

(imitating Bob's voice)

Your password is OK

Allo Bob ?
Alice speaking
proof I am Alice:
my password is ..

Hi Alice
Your password is OK

Password Challenge

Allo Bob ?
Alice speaking

Really ?
Proove me your identity

I don't give my password
I can give you only a clue
you can check with Trent

OK, Send me you pass hashed by “X”
(.. Compute Y=hash(P,X))
It is “Y”

Is it True that ?
“Y” ?= Alice pass hashed by “X”

OK Alice

Trusted Thirdparty...

Allo Bob ?
Alice speaking Really ?

Proove me your identity

I (“Trent”) certify this token paper
was delivered to Alice on jun 2017:
XADS4FSQ3RTXF

Please Attest I am Alice
(here is my password)

Bob: Ask “Trent” … he prooved my identity by token XADS4FSQ3RTXF

Is it true this token was given to Alice:
XADS4FSQ3RTXF ?

Yes (And Alice did not complain yet being stolen)
OK Alice

Problems With Thirdparties...

Hi ! Are you Trent ?

Are You Alice?

Physical Hand-Shake
... Exchange Shared Key

Bob, here is a secret “key” for talking to you in 6 monthes

Hi Bob
Let us use our private shared key
(remember I gave you last 6 monthes)
..
** Switch Encrypted **
SDFG23456RGQEST43

“Key” recomputed from Data ...

“Hi ...”

blabla

“Regards”

Encrypt using
“Key”

Decrypt using
“Key”

Test all possible “Key”
Knowing that message “SFWXV..”
matches “Hi*”

SFWXV
34TSQS

“Hi ...”

“Key” inversion
 from Predicatable Data

WARN : do NOT use TOO many data …
AND NO predicatable data …

otherwise “Key” could be recomputed by Eve...

Thow “Key” at end of communication

Famous during World War 2 :
Alan Turing decrypted German Submarine “Enigma” Messages
… partly because all messages ended with “Hi Hitler”

Encrypted … & Still Weak

Authentication

Confidentiality

Authentication

Integrity

Authorisation

Data Leak

Data Replay

...

Password Crack

Predicatable guess

(Partial) Data Leak
Example : Modulo - Hashes

Challenge response (1)
My password modulo 1000 is 4

Challenge response (2)
My password modulo 6421 is 2

Challenge response (3)
My password modulo 9482 is 7

Partial Data Leak
Padding – Delay...

Try password1..

Wrong password
(answer after 10ms)

Try password2..

Wrong password
(answer after 11ms)

Try password9..

Wrong password
(answer after 20ms)

Seems to finish by “9”
… it tooks more time to compute all

Encrypted … Data Replay

Encrypted credit card number: “XDFGZFG”

Encrypted credit card number:
 “XDFGZFG”

Using Shared Key for
Exchanging TMP SessionKey ONLY

Hi Bob
Let us use our private shared key
(remember I gave you last 6 monthes)
.. ONLY TO EXCHANGE A NEW Random Key!
** Switch encrypted (shared key) **
(sessionKey=) SDFG23456RGQEST43

Delete temporary session key

Generate
new Random Key

** Switch encrypted (new session key) **
(secret =) G2HA0QEG3HHF5SSG.....

Fast Crypt using XOR
+ Session Key Random Generator

Generate
new Seed Random Generator

** Switch encrypted (shared key) **
(seed =) G2HA0QEG3HHF5SSG.....

(seed) ….

** Switch encrypted (XOR seed generator mode) **
...

Secret message blabla ….

Secret message blabla ….

0 1 0 1 1 1 0 1 1 ..

 1 0 1 0 0 1 0 1 0

Seed gen
0 1 0 1 1 1 0 1 1 ..

Seed gen

(encrypt seed =) G2HA0QEG3

 ….. → 1 0 1 0
(seed) ….

 ….. → 1 0 1 0

 1 0 1 0 0 1 0 1 0

.. ..

Family of Cryptographic Functions

One-Way (Irreversible)
Hashing

2-Way (Reversible)

Symmetric Key
Shared

Assymmetric Key
Public-PrivateRandomization

Pseudo Random
Generator

Entropy
Generator

Permutation
XOR

Hide/Extract
(Steganography)

Key Encrypt-Decrypt

Problem Solving
Proof Of Work

Family of Cryptographic Functions

One-Way (Irreversible)
Hashing

2-Way (Reversible)

Symmetric Key
Shared

Assymmetric Key
Public-PrivateRandomization

Pseudo Random
Generator

Entropy
Generator

Permutation
XOR

Hide/Extract
(Steganography)

Key Encrypt-Decrypt

Problem Solving
Proof Of Work

XOR ...

VERY VERY Fast

Works Great with “Good” Pseudo Random Generators

Secret message blabla ….

Secret message blabla ….

0 1 0 1 1 1 0 1 1 ..

 1 0 1 0 0 1 0 1 0

Xor MASK
0 1 0 1 1 1 0 1 1 ..

XOR MASK

 1 0 1 0 0 1 0 1 0

Permutations

b1 b2 b3 … bN

bp(1) bp(2) bp(3) … bp(N)

P: [1..N] → [1..N] P is a permutation if it is inversible (all elts are reached once)

b1 b2 b3 … bN

P

P
-1

Family of Cryptographic Functions

One-Way (Irreversible)
Hashing

2-Way (Reversible)

Symmetric Key
Shared

Assymmetric Key
Public-PrivateRandomization

Pseudo Random
Generator

Entropy
Generator

Permutation
XOR

Hide/Extract
(Steganography)

Key Encrypt-Decrypt

Problem Solving
Proof Of Work

Combining XOR & Permutations
& Add

b1 b2 b3 … bN

b1 b2 b3 … bN
Step 1
XOR Mask1

P2

m1 m2 m3 … mN

b1 b2 b3 … bN bN+1 … bP

P

b1 b2 b3 … bN Key1 Key2 … keyK
m1 m2 m3 … mP

Repeat N Rounds...

1Round

Step 2
Permut

Step 5
Permut

Step 3 :
Add Key

b1 b2 b3 … bN

Step 4 :
XOR Mask4

Example : AES, 3-DES, ...

Family of Cryptographic Functions

One-Way (Irreversible)
Hashing

2-Way (Reversible)

Symmetric Key
Shared

Assymmetric Key
Public-PrivateRandomization

Pseudo Random
Generator

Entropy
Generator

Permutation
XOR

Hide/Extract
(Steganography)

Key Encrypt-Decrypt

Problem Solving
Proof Of Work

Assymetric Keys

msg

Private Public

encrypted msg

Only “Priv”
can encode

Everybody can decode
(= check Signature)

msg encrypted msg

Every body
can encode

Only “Priv”
can decode

Private Public

Public Private

Public Keys – Private Keys...

Private

Public

Keys define 2 operations : inverse of each others
Like +X → -X
 *X → /X
 ^N →sqrt^N

msg transformed

But Deducing Keys
 MUST Be Impossible/Difficult

Private

Public

msg transformed

Deducing Private Key
From Public Key
MUST Be Impossible

Combining 2 Pairs of Pub-Priv Keys

msg intermediate encrypted

encrypted intermediate msg

PrivA

PubA

PrivB

PubB

PubA
PubB

Exchange Public Keys

PrivA PubB

PrivB
PubA

Inverse

Inverse

Assymetric Keys For Secured
2-Way Channel

msg intermediate Encrypted msg

Only Bob
can decode

PrivA PubB

Only Alice
can encode Secure channel Alice to Bob

respInt. respEncrypted resp

Secure channel Bob to Alice

PubA PrivB

Only Alice
can decode

Only Bob
can encode

Man In The Middle...

PrivA

PubA

PrivE1

PubE1

Interception of Pub Key Exchange … Alice<-> Bob

PubE2

Instead of PubA

PrivB

PubB

PrivE2

PubE2

PubE1

Bob trust “PubE2”

PrivB
PubE2

Decode
as-of “Alice”

Re-encode
as-of “Bob”

PrivE1

Instead of PubB
Alice trust “PubE1”

PubA

RSA : Rivest Shamir Adleman

Basic Math: Modulo definition

Remember Euclidian Division

Let N a number > 0

Every number divided by N
has a quotient and a remainder – also called modulo

x / n : for all x => there exist(uniq) q & r with 0<=r<n
 x = q n + r

Modulo N function: x → x mod[n] = r

Algebra Operation on Modulos

(x + y) mod [n] = (x mod [n] + y mod [n]) mod[n]

˙x+ y= ẋ+ ẏ

(x * y) mod [n] = (x mod [n] * y mod [n]) mod[n]

˙x . y= ẋ . ẏ

ℤ

n ℤ

Reasonning on equivalence classes, for equivalence relation “R”: a R b <=> a-b mod[n]=0

ẋ y= ẋ y

={0̇, 1̇,2̇, ... ˙N−1}

Example on modulo 9

123 .456mod [9]=56088mod [9]=(5+6+0+8+8)mod [9]=0

Doing modulo 9 as a 9-year old boy at school
 … sum digits to check operations

=(1+2+3) .(4+5+6)mod [9]=6 .6mod [9]=0

This works because 10 mod[9]=1 .. 100 mod[9]=1, 1000 mod[9]=1
so whatever X written in decimal format:

(an10n
+an−1 10n−1

+..a2102
+a110+a0)mod [9]=(an+..+a1+a0)mod [9]

When p is prime
Z/pZ* is a multiplicative Group

Remember Group definition ?

G = { g0, g1, ...gN } a Set of elements
with an operation “.” (inside G)
Is a “group over .”

If it exists a neutral element “e”

every element has an inverse:

∀ a , e . a=a .e=e

∀ a ,∃b∣a .b=b .a=e
(b is unique and is the inverse of a :)b=a−1

Example

Neutral
element Inverse

of each others
Self Inverse

ℤ

7 ℤ∗

{1̇, 2̇, 3̇, 4̇,5̇, 6̇}

2̇ . 4̇=8̇=1̇ 3̇ .5̇=1̇5=1̇ 6̇ . 6̇=3̇6=1̇

Consecutive Powers … (=Orbits)

a∈
ℤ

pℤ∗
, p prime

{a ,a ²,a ³,a ,⁴ ...ap−1 , ...} Is inside finite set..
so is cyclic ...

let k2 index be the first repetition of already seen k1 elt:

ak 2
=ak 1

ak 2−k 1
=e

Taking inverse
Proof next... that k2-k2=p-1

Orbits are all similar... all equals

whatever a, the orbit contains e... so orbits contains

For 2 elements a & b … orbits of a and b are identical, “scaled”
By a factor

So For any orbit, card Orbit = cst

If they are N orbits, they all cover the set ℤ

p ℤ
∗

… There is only 1 orbit, containing ALL elements !

{a ,a2, ..ap−2 , e}

If p is a prime number … (sub-orbit N can not divide P prime)

a−1b

a

ba−1b

Example
ℤ

7 ℤ∗

{1̇, 2̇, 3̇, 4̇,5̇, 6̇}

Start for example with a = 3
Compute a, a² ...

a ²=3̇ 3̇=9̇=2̇
a=3̇

a3
= ˙3 .2=6̇

a4
= ˙3 .6= 4̇

a5
= ˙3 .4=5̇

a6
= ˙3 .5=1̇

“Small Theorem” of Fermat

∀ a∈
ℤ

p ℤ
∗
, p prime

a p−1
=1mod [p]

a p=amod [p]

Relationship with Crypto? ...

For p1,p2 2 prime numbers...
a p1

=amod [p1]

Intuitively … Try decompose p1.p2 as a different product
of 2 key parts “e.d mod[..]” … but not as p1.p2 (too easy) !

a p1 . p2
=(ap1

)
p2
=amod [p1 p2]

encrypt decrypt

a p2
=amod [p2]

RSA ...

Technically.. solve e and d...
e .d=1mod [ϕ(p1 p 2)]

(ae)d=amod [p1 p2]
Then

(ad)e=amod [p1 p2]And also

Inverting Key
.. need Decomposing N in p1.p2

Choose 2 HUGE primes p1,p2

Multiply N=p1.p2

… give N to someone

 and reward 1M$ IF he finds back p1 & p2

Naive Search...

Given N
Try decompose :

for (BigInteger i = N; ; i = i-2) {
 if (divides(i, N)) {
 p1 = i; break;
 }
}

How HUGE is HUGE enough?

Example: choose p1 > 2 1024

In Theory : Decomposition Program finishes

In Practise :

=2.2.2. …. (1024 times)
~ 1000 . 1000 …. (1014 times)
~ 1 000 000 000 … (3000 zeros)

- More than Atoms in Universe

- Slow... 1CPU => 1000...00000 centuries

- Energy : 1000...000 CPUS => requires more power
 than 1000...000 solars

Possible to Find so HUGE Primes?

In Theory : infinite numbers of Primes

Storing all primes from [0, 2^1024] ??
 ... is even harder than counting them

Primes become rare : Count primes in [0, N] ~ log N

There always exist a prime in [k, 2k]

Find One Random (!) Huge Prime
Efficiently (?)

for (BigInteger i = start; ; i = i+2) {
 if (isPrime(i)) {
 p = i; break;
 }
}

Given start = random number > 2^N-1 … with N~1024

Need Efficient Primality Test

a p−1
=1mod [p]∀ a∈

ℤ

p ℤ
∗

p is prime⇔

Choose any a, for example a=27 a p−1
[p]

p is NOT prime

Compute

If != 1

If == 1 Probability 1/p that p is anyway not prime

Reapeat for b=43 Confirm .. or proba 1/p^2

Efficient Compute Powers..

Write in basis-2 (binary representation)

∀ i , bi∈{0,1}

Then

square square

={
a1if b1=1
1 if b1=0

}. {
a2 if b2=1
1 if b2=0

}. ...{
a2n if bn=1
1 if bn=0

}

p−1=b0 20
+b1 21

+..bn 2n

a p−1=ab0 . a2b1a2nb n

Efficient (Enough?) Powers Compute

1024
P ~ 2

a p−1
[p]

a p−1 Computable in o(2.N multiplications)
BUT Would be a HUGE number …

Computable in
 o(2.N multiplications + 1.N modulo)
… quite FAST, with small memory need

N=log2(p)=1024

Not Efficient Enough For Video &
High Traffic Network !!!

But OK for small DATA

~ 1ms on a CPU

Embeddable in RDA SecurID card ship

OK For Exchanging a Seed Pseudo Generator
 … then using XOR encoding

Application : TLS protocol (ex SSL) , for example in

Family of Cryptographic Functions

One-Way (Irreversible)
Hashing

2-Way (Reversible)

Symmetric Key
Shared

Assymmetric Key
Public-PrivateRandomization

Pseudo Random
Generator

Entropy
Generator

Permutation
XOR

Hide/Extract
(Steganography)

Key Encrypt-Decrypt

Problem Solving
Proof Of Work

Fast Pseudo-Random Generators

Back to Math : Doing Polynomials

P[X]=a0+a1 X+a2 X ²+..an X
n

… Polynomials over Z/2Z modulos, truncated to Rank N

X∈
Z

2Z
={0̇, 1̇} ∀ i , a i X∈

Z
2Z

⇒ P[X]∈
Z

2Z

… we are interrested not in X … put in P (in coefficients)
algebra of P : P1, P2, … P1.P2, P1+P2

Consecutive Powers of P

{P [X] ,P2[X] , P3[X] ... P2N

[X]...}

Consecutive (truncated) powers of P :

If “P” is chosen irreductible in Z/2Z[n]
… then orbit contains all polynoms!
 (all coefficients of all polynoms)

card ({a1 a2 ... an})=22n

Suppose N = 64 … then 2264

≃2109

.. a Pseudo-Random
 generator HUGE cycle

Multiply (and Truncate) Polynoms

A[X]=a0+a1 X+a2 X ²+..an X
n

B [X]=b0+b1 X+b2 X ²+..bnX
n

A .B [X]=A [X] .B [X]=a0 .b0+(a0 b1+a1 b0)X

+(a0 b2+a1 b1+a2 b0)X ²+..(a0bn+..anb0)X
n

+truncated ..X n+1 .. X2n

Efficient for P=1+X
using Bit Shift, Bit And..

A[X]=a0+a1 X+a2 X ²+..an X
n

B [X]=1+X

A .B [X]=a0+(a0+a1)X+(a1+a2)X ²+...

a1 a2 a3 ... an−1 an

Bit Shift+ a2 a3 a4 ... an 0

(a1+a2) (a2+a3) ..(an−1+an) an

Family of Cryptographic Functions

One-Way (Irreversible)
Hashing

2-Way (Reversible)

Symmetric Key
Shared

Assymmetric Key
Public-PrivateRandomization

Pseudo Random
Generator

Entropy
Generator

Permutation
XOR

Hide/Extract
(Steganography)

Key Encrypt-Decrypt

Problem Solving
Proof Of Work

Hashing ...

Hashing is One-Way transformation

Hashing different product usually give different result

!= !=

Hashing … must be equi-distributed
minimise “Collisions”

A Hashing Collision

!= ==

Of course if can happen … example in java:
“public int hashCode()”
by default Object.hashCode = System.identityHashCode(x)
= … 64bits pointer (when first hashed) → hashed to 32 bits
= (hashPtr64 ^ (hashPtr64 >>>32))

Hashing : MD5, SHA-1, SHA-256,
SHA-512 ..

Hashing For Storing “Passwords”

A password pass Hash

HashCreate Login Account

Extra SALT

Check Password

A password pass HashExtra SALT

Hash Again Same HASH ?
(assume pass OK)

Hashing : Good for Signing

A message to sign …. Msg Hash

Hash to (example) 512 bits

encrypted(msg Hash)

Private

Public

A message to sign ….

Signed Message : clear text + extra signature (at bottom of page)

Check that a message signature is VALID :

Msg Hash

1: recompute Hash 2: decrypt signature

Msg Hash

3: check equals

Certificates = Signed Public Keys

Certificate Public Key
Certificate Signature ...

Family of Cryptographic Functions

One-Way (Irreversible)
Hashing

2-Way (Reversible)

Symmetric Key
Shared

Assymmetric Key
Public-PrivateRandomization

Pseudo Random
Generator

Entropy
Generator

Permutation
XOR

Hide/Extract
(Steganography)

Key Encrypt-Decrypt

Problem Solving
Proof Of Work

Hash a BitCoin Transactions Chain
BlockChain

Merkle Tree

Proof Of Work, Mining

Other BlockChains
(for contracts, legal ownership,

assurance, ..)

Conclusion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

