Lesson iut.univ-paris8.fr 2018-05

Introduction to Kubernetes
(Cluster Containers Orchestration)

This Document:
http://arnaud-nauwynck.github.io/docs/Intro-Kubernetes.pdf

arnaud.nauwynck@gmail.com

Comparison, Alternatives

Docker Compose & Docker Swarm

% 9

Gaogle

Google Stack Foundation:
Borg - Omega (~ Kubernetes)

3 CamSas

The Google Stack

data processing

FlumeJava [CRP*10]| | Tenzing [CLL*11] | | MillWheel [ABB*13]| |Pregel [MAB*10]
4 parallel programming SQL-on-MapReduce stream processing graph processing
I3
v MapReduce [DGOS] v Percolator [PD10]
A parallel batch processing incremental processing PowerDrill [HBB*12]
| dorasiorage] o oo o query Ul & m!uu::mr store
MegaStore [BBC*11] Spanner [CDE*13] Dremel [MGL"10] _
across-DC ACID database cross-DC multi-version DB 4 4 columnar database
. BigTable [CDG*06] B t !'hi_j Dapper [SBB*10]
row-consistent multi-dimensional sparse mapy « F i :_:;; pervasive tracing
VR
v GFS/Colossus [GGLO03] ¥ v]2 CPI° [ZTH*13)
distribured block store and file system . E interference mitigation 4

coordination & cluster management
Chubby [Bur06] <> Borg [VPK*15] and Omega [SKA*13] v

locking and coordination cluster manager and job scheduler

Figure from M. Schwarzkopf, "Operating system support for warehouse-scale 14

http.ffcamsas.org @Camﬂg{:‘*&* computing”, PhD thesis, University of Cambridge, 2015 (to appear).

Vision : DataCenter as a Computer

Programming Model Analogy

1 Process — N Threads 1 Service — N Containers
Schedule on CPU Cores Schedule on Nodes

(on GPU Processing Units) ﬁ

Inter-Threads communications Inter Containers Networks
Low Level Thread API Low Level Docker API

High Level Concurrent Library High Level Cloud-Native Library

https://en.wikipedia.org/wiki/Fallacies of distributed computing

& Not logged in Talk Contributions Create account Log in

Article Talk Read Edit View history |Search Wikipedia Q

wikieeoA | Fallacies of distributed computing

The Free Encyclopedia From Wikipedia, the free encyclopedia

Main page The fallacies of distributed computing are a set of assertions
Contents made by L Peter Deutsch and others at Sun Microsystems describing
Featured content false assumptions that programmers new to distributed applications
Current events invariably make.

The fallacies [edit]
The fallacies are:[!!

. The network is reliable.

. Latency is zero.

. Bandwidth is infinite.

. The network is secure.

. Topology doesn't change.

. There is one administrator.
. Transport cost is zero.

o J4 oo v B2 W M-

. The network is homogeneous.

Expect Chaos ..

Disk —» Crashes
Electricity — Shutdown
CPU - Burn

Network — unplug / noise

Design for Resiliency .. Test

i
=
I

EXPECT FRILURE=

https://kubernetes.io/

ﬂ;g'ﬁ kUbEI’ﬂEtES Documentation Blog Partners Community Case Studies v1.10 ~

Production-Grade Container Orchestration
Automated container deployment, scaling, and management

Try Our Interactive Tutorials

Kubernetes is an open-source system for
automating deployment, scaling, and

management of containerized e
applications. =
Node

It groups containers that make up an application into logical units for
easy management and discovery. Kubernetes builds upon 15 years of
experience of running production workloads at Google, combined with
best-of-breed ideas and practices from the community.

Kubernetes Name & Logo ...

What does Kubernetes mean? K8s?

The name Kubernetes originates from Greek, meaning helmsman or pilot, and is

the root of governor and cybernetic. K8s is an abbreviation derived by replacing

the B letters "ubernete” with "8".

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Features

Automatic binpacking

Automatically places containers based on their resource
requirements and other constraints, while not sacrificing
availability. Mix critical and best-effort workloads in order to
drive up utilization and save even more resources.

Horizontal scaling

Scale your application up and down with a simple command,
with a Ul, or automatically based on CPU usage.

Automated rollouts and rollbacks

Kubernetes progressively rolls out changes to your application
or its configuration, while monitoring application health to
ensure it doesn't kill all your instances at the same time. If
something goes wrong, Kubernetes will rollback the change for
you. Take advantage of a growing ecosystem of deployment
solutions.

Storage orchestration

Automatically mount the storage system of your choice,
whether from local storage, a public cloud provider such as
GCP or AWS, or a network storage system such as NFS, iSCSI,
Gluster, Ceph, Cinder, or Flocker.

Self-healing

Restarts containers that fail, replaces and reschedules
containers when nodes die, kills containers that don't respond
to your user-defined health check, and doesn't advertise them
to clients until they are ready to serve.

Service discovery and load balancing

No need to modify your application to use an unfamiliar
service discovery mechanism. Kubernetes gives containers
their own IP addresses and a single DNS name for a set of
containers, and can load-balance across them.

Secret and configuration management

Deploy and update secrets and application configuration
without rebuilding your image and without exposing secrets in
your stack configuration.

Batch execution

In addition to services, Kubernetes can manage your batch and
Cl workloads, replacing containers that fail, if desired.

https://kubernetes.io/docs/home/

kubernetes

Documentation

Blog Partners Community Case Studies v1.10 -

Setup

01 - Downloading Kubernetes
02 - Independent Solutions
03 - Hosted Solutions

04 - Turn-key Cloud Solutions

Concepts

01 - Overview
02 - Kubernetes Architecture

03 - Extending Kubernetes

Tasks

01 - Install Tools

02 - Configure Pods and Containers
03 - Inject Data Into Applications
04 - Run Applications

05 - Run Jobs

06 - Access Applications in a Cluster

05- Custom Solutions

06 - User Journeys

07 - Installing Addons

08 - Configuring Kubernetes with Salt

04 - Containers
05- Workloads
06 - Configuration

07 - Monitor, Log, and Debug

08 - Extend Kubernetes

09-TLS

10 - Administer a Cluster

11 - Federation - Run an App on Multiple
Clusters

12 - Manage Cluster Daemons

09 - Building Large Clusters
10 - Running in Multiple Zones
11 - Building High-Availability Clusters

07 - Services, Load Balancing, and
Networking
08 - Storage

09 - Cluster Administration

13- Manage GPUs

14 - Manage HugePages

15- Extend kubectl with plugins
16 - Troubleshooting

Master - Nodes

Master — Node — Pod - Container

Master Detall : kubectl,API,..
Node Detall :Kubelet, Kube-Proxy,..

[kubectl w
b/

Master Node \ 4

Kubernetes = Docker + ...

Docker Already have (Toy) Docker Swarm
(Docker Swarm = same APl as Docker... for Cluster)

So, what’s more in Kubernetes compared to Docker ?

... different APl! New Higher-Level Concepts

Docker — Kubernetes
Imperatif - Declaratif

$ docker run image ... $ kubelet rs create ...
$ docker start/stop/rm/ $ kubelet rs delete ...
One-shot action execution Manage persistent resource

Command = verb to execute Command = REST

Behind — Controller loop
to reconcile(start/stop/..)

REST — Persistent Resources

]

) /

[API Server }

Controller = Reconcile
diff : Expected - Observed

Expected State

Schedule
\ Diff State Actions
Real Observed State A ‘

.
&__/

Example: Scale UP => schedule run

Expected State

Schedule
\ Diff State Actions
Real Observed State A

-2 containers Run +2 containers
X8 ers alive X8¢c Is 1

Run +1 container on nodeA
Run +1 container on nodeB

Example: Scale DOWN => schedule rm

Expected State

Schedule
\ Diff State Actions

Real Observed State

X 10 .ers alive X 10 .ers

Kill -1 container on nodeA
Kill -1 container on nodeB

+2 containers Kill -2 containers

Kubernetes Objects

Kubernetes contains a number of abstractions that represent the state of your
system: deployed containerized applications and workloads, their associated
network and disk resources, and other information about what your clusteris
doing. These abstractions are represented by objects in the Kubernetes AP|; see

the Kubernetes Objects overview for more details.

The basic Kubernetes objects include:

* Pod

® Service

® YVolume

* Namespace

In addition, Kubernetes contains a number of higher-level abstractions called
Controllers. Controllers build upon the basic objects, and provide additional
functionality and convenience features. They include:

® ReplicaSet

® Deployment

e StatefulSet
® DaemonSet

® Job

Concepts

HOME SETUP CONCEPTS

Concepts
> Qverview
¥ Kubernetes Architecture
Nodes
Master-Node communication

Concepts Underlying the Cloud Controller
Manager

P Extending Kubernetes

» Containers

» Workloads

» Configuration

P Services, Load Balancing, and Networking
B Storage

b Cluster Administration

Nodes

What is a node?

Node Status

* Addresses

¢ Condition

¢ Capacity

¢ Info

Management

¢ Node Controller

¢ Self-Registration of Nodes
¢ Manual Node Administration

* Node capacity

API Object

What is a node?

A node is a worker machine in Kubernetes, previously known as a minion. A

node may be a VM or physical machine, depending on the cluster. Each node
has the services necessary to run pods and is managed by the master
components. The services on a node include Docker, kubelet and kube-proxy. S

The Kubernetes Mode section in the architecture design doc for more details.

Node API

API OVERVIEW

WORKLOADS

Container v1 core

CronJob v1betal batch
DaemonSet v1 apps
Deployment v1 apps

Job v1 batch

Pod v1 core

ReplicaSet v1 apps
ReplicationController v1 core

StatefulSet v1 apps

DISCOVERY & LOAD BALANCIM
Endpoints v1 core
Ingress vibetal extensions

Service v1 core

CONFIG & STORAGE
ConfigMap v1 core

Secret v1 core
PersistentVolumeClaim v1 core
StorageClass v1 storage.k8s.io
Volume v1 core

VolumeAttachment vibetal sto

METADATA
ControllerRevision v1 apps
CustomResourceDefinition v1b:

Event v1 core

Node v1 core

Group Version Kind

Node is a worker node in Kubernetes. Each node will have a unique
identifier in the cache (i.e. in eted).

©® Appearsin:

¢ Nodelist core/vi

Field Description
apiversion APIVersion defines the versioned schema of this
string representation of an object. Servers should convert
recognized schemas fo the latest internal value, and
may reject unrecognized values. More info:
https://git.kBs.io/community/contributors/devel/api-
conventions.md#resources
kind Kind is a string value representing the REST resource
string this object represents. Servers may infer this from the
endpoint the client submits requests to. Cannot be
updated. In CamelCase. More info: hitps://git.k8s.io
fcommunity/contributors/devel/api-
conventions.md#types-kinds
metadata Standard object's metadata. More info:
ObjeciMeta https://git.kBs.io/community/contributors/devel/api-
conventions.md#metadata
spec Spec defines the behavior of a node. hitps:/git.k8s.io
NodeSpec lcommunity/contributors/devel/api-

ranuantinne mdftenan_and_etatie

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#node-v1-core

Kubernetes API ... Rest Json/Yaml

DaemonSet v1 apps

Deployment v1 apps

Write Operations
Read Operations
Status Operations
Misc Operations

Job v1 batch

Pod v1 core

ReplicaSet v1 apps
ReplicationController v1 core

StatefulSet v1 apps

DISCOVERY & LOAD BALANCING

Endpoints v1 core
Ingress vibetal exiensions

Service v1 core

CONFIG & STORAGE

ConfigMap v1 core

Secret v1 core

Deployment v1 apps

Group Version Kind

€@ Other api versions of this object exist: vibeta2 vibetal vibetal

Deployment enables declarative updates for Pods and ReplicaSets.

e Appears In:

® DeploymentList appsivi

Field Description

iVersiaon APIVersinn defines the versinned schema of this

Deployment Config to run 3 nginx instances (max rollback set to 10
revisions).

apiVersion: apps/vlbetal

kind: Deployment
metadata:
Unique key of the Deployment instance
name: deployment-example
Spec:
3 Pods should exist at all times.
replicas: 3
template:
metadata:
labels:
Apply this label te pods and default
the Deployment label selector te this value
app: nginx
spec:
containers:
- name: nginx
Bun this image

image: nginx:1.10

Http Rest Yam| - Json ...

1 Command (requires :u.-=ctl! proxyv (o be running)

S kubectl proxy Response Body

curl -X POST -H 'Content-Type: applicaticn/yaml' ——

apiversion: apps/vlbetal
kind: Deployment

metadata: $ Curl 'X POST .

name: deployment-example
spec: or "kind": "Deployment™,
replicas: 3 "apiVersicon™: "apps/vlbetal”
e $ kubelet .. P PP ,
SEvsmmsteosssymaAsRs =2 "metadata™: |
template: "name": "deployment-example”,
metadata:)
"namespace": "default",
"selfLink": "/fapis/apps/vlbetal/namespaces/defaul

"uid": "4cccaldd%-%cbl-11e6-%c34-42010a8001448",

labels:

app: nginx

Spec:
containers: "resourceVersion™: "211830&7,
= wElES "generation™: 1,

e "creationTimestamp™: "2016-10-28T01:53:1%%2",
ports: .
labels":
- containerPort: 80 = [
' nttp:/f/127.0.0.1:8001/apis/apps/vl/namespaces/defau "app™: "nginx’

b
"zpec": |
"replicas™: 3,
"selector™: |
"matchLabels": |

"app": "nginx"

br
"template™: |

"metadata™: |
"creationTimestamp": 5
"labels™: |

I'|appl'|: I":—_gi:—_xl"

Kubectl Client

SETUP CONCEPTS ASKS JTORIALS REFERENCE

AN

Reference Documentation

kubectli

Standardized Glossary

P Using the API

» API| Reference kubectl controls the Kubernetes cluster manager

P Federation API

Synopsis
¥ kubectl CLI ynop
Overview of kubectl kubectl controls the Kubernetes cluster manager.
kubectl Find more information at: https://kubernetes.io/docs/reference/kubectl/overview/

kubectl Commands
kubect| for Docker Users kubectl [flaga]
kubectl Usage Conventions

JSONPath Support Options

kubectl Cheat Sheet

» Setup Tools Reference --alsologtostderr log to standard error &
--as string Username to impersonate
» Command-line Tools Reference -=as-group stringArray Group to impersonate f«
--cache-dir string Default HTTP cache dire
> Kubernetes Issues and Security --certificate-authority string Path to a cert file fo

-=-rliaent-rertifirate atrinn Path tn a elient rerti:

Kubetcl commands

GETTING STARTED
run
run-container

expose

APP MANAGEMENT
annotate
autoscale
convert
create

delete

edit

get

label

patch

replace
rolling-update
rollout

scale

set

DECLARATIVE APP MANAGEMENT

apply

WORKING WITH APPS
attach

auth

cp

describe

exec

logs

port-forward

proxy
top

CLUSTER MANAGEMENT
api-versions

certificate

cluster-info

cordon

drain

taint

uncordon

KUBECTL SETTINGS AND USAGE

alpha
completion
config
explain
options
version

plugin

DEPRECATED COMMANDS

Copyright 2016 The Kubernetes Au

Kubectl commands detalls

GETTING STARTED
run
run-container

expose

APP MANAGEMENT
annotate
autoscale
convert
create

delete

edit

get

label

patch

replace
rolling-update
rollout

scale

set

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

GETTING STARTED

This section contains the most basic commands for getting a workload
running on your cluster.

® -un will start running 1 or more instances of a container image on
your cluster.

® -xpose Wil load balance traffic across the running instances, and can
create a HA proxy for accessing the containers from outside the cluster

Once your workloads are running, you can use the commands in the
WORKING WITH APPS section to inspect them.

run

Create and run a particular image, possibly replicated.

Creates a deployment or job to manage the created container(s).

Kubernetes Controllers:
ReplicationSet, ..

¥ Workloads

¥ Pods
Pod Overview
Pods
Pod Lifecycle

Init Containers

Pod Preset
Disruptions

v Controllers » Scale=Ntimes ... image
ReplicaSet > “schedule” on nodes

ReplicationController
Deployments

StatefulSets .
== 1 CONtainer per node

(example: cAdvisor monitoring)

DaemonSet
Garbage Collection

Jobs - Run to Completion

CronJob \ Launch Job (short tasks, batches)

Networks...

Port Forwarding

Level 7 Reverse Proxy, Ingress

Overlay Network

Overlay Network (Flannel/OpenVSwitch/Weave)

I | I
Container Runtime Container Runtime Container Runtime
Operating System Operating System Operating System

Infrastructure Infrastructure Infrastructure

Kubelet
Kube-proxy

=
>
=
(=%
d
o
3
"

Master

Physical Network

Volumes

Summary
Part 1: VM & Containers
Part 2 : Docker
Part 3: Kubernetes

(Cluster Orchestration)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

